Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836436

RESUMO

Anthocyanins (ACNs) have attracted considerable attention for their potential to modulate the immune system. Research has revealed their antioxidant and anti-inflammatory properties, which play a crucial role in immune regulation by influencing key immune cells, such as lymphocytes, macrophages, and dendritic cells. Moreover, ACNs contribute towards maintaining a balance between proinflammatory and anti-inflammatory cytokines, thus promoting immune health. Beyond their direct effects on immune cells, ACNs significantly impact gut health and the microbiota, essential factors in immune regulation. Emerging evidence suggests that they positively influence the composition of the gut microbiome, enhancing their immunomodulatory effects. Furthermore, these compounds synergize with other bioactive substances, such as vitamins and minerals, further enhancing their potential as immune-supporting dietary supplements. However, detailed clinical studies must fully validate these findings and determine safe dosages across varied populations. Incorporating these natural compounds into functional foods or supplements could revolutionize the management of immune-related conditions. Personalized nutrition and healthcare strategies may be developed to enhance overall well-being and immune resilience by fully understanding the mechanisms underlying the actions of their components. Recent advancements in delivery methods have focused on improving the bioavailability and effectiveness of ACNs, providing promising avenues for future applications.


Assuntos
Antocianinas , Suplementos Nutricionais , Antocianinas/farmacologia , Antocianinas/metabolismo , Disponibilidade Biológica , Antioxidantes/farmacologia , Anti-Inflamatórios
2.
Inflammopharmacology ; 28(4): 1073-1089, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31350628

RESUMO

Anti-inflammatory and antinociceptive effects of the acetone extract of Cocos nucifera (CnAE), an important ingredient in several traditional drugs, have been studied using different in vitro and in vivo models. CnAE did not show any observable toxicity in RAW264.7 macrophages by MTT assay. The calorimetric analysis (total COX, 5-LOX, MPO, iNOS and NO), ELISA (IL-1ß, IL-6, TNF-α and PGE2) and qRT-PCR (IL-1ß, IL-6, TNF-α and NF-κB) were performed in LPS-induced RAW264.7 macrophages. Phosphorylation of NF-κBp65 and IκB was determined by western blotting. CnAE (100 µg/mL) remarkably inhibited total COX (68.67%) and 5-LOX (63.67%) activities, and subsequent release of iNOS, NO and PGE2 (p ≤ 0.05) in RAW264.7 cells treated with LPS. ELISA showed CnAE markedly decreased the level of pro-inflammatory cytokines IL-1ß (p ≤ 0.001), IL-6 (p ≤ 0.001) and TNF-α (p ≤ 0.001) in LPS treated RAW264.7 cells. CnAE (100 µg/mL) also significantly down-regulated the mRNA expressions of pro-inflammatory cytokines (IL-1ß, p ≤ 0.05; IL-6, p ≤ 0.01 and TNF-α, p ≤ 0.001) and NF-κB (p ≤ 0.001) against LPS-induction. Moreover, LPS-induced phosphorylation of IκB-α and NF-κB p65 was significantly inhibited by CnAE (100 µg/mL). In vivo anti-inflammatory studies showed that CnAE (400 mg/kg) significantly inhibited carrageenan-induced acute paw oedema (59.81%, p ≤ 0.001) and formalin-induced chronic paw oedema (52.90%, p ≤ 0.001) in mice. CnAE at a dose of 400 mg/kg also showed a significant anti-nociceptive effect on acetic acid-induced writhing (48.21%, p ≤ 0.001) and Eddy's hot plate methods. These findings suggest that CnAE has significant anti-inflammatory and anti-nociceptive properties, mainly attributed to the inhibition of NF-κB/IκB signalling cascade.


Assuntos
Anti-Inflamatórios/farmacologia , Cocos/química , Inflamação/tratamento farmacológico , Inflorescência/química , Macrófagos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Analgésicos/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Fenol/química , Extratos Vegetais/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...